Robust Partially Observable Markov Decision Processes

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Partially observable Markov decision processes

For reinforcement learning in environments in which an agent has access to a reliable state signal, methods based on the Markov decision process (MDP) have had many successes. In many problem domains, however, an agent suffers from limited sensing capabilities that preclude it from recovering a Markovian state signal from its perceptions. Extending the MDP framework, partially observable Markov...

متن کامل

Robust partially observable Markov decision process

We seek to find the robust policy that maximizes the expected cumulative reward for the worst case when a partially observable Markov decision process (POMDP) has uncertain parameters whose values are only known to be in a given region. We prove that the robust value function, which represents the expected cumulative reward that can be obtained with the robust policy, is convex with respect to ...

متن کامل

Bounded-Parameter Partially Observable Markov Decision Processes

The POMDP is considered as a powerful model for planning under uncertainty. However, it is usually impractical to employ a POMDP with exact parameters to model precisely the real-life situations, due to various reasons such as limited data for learning the model, etc. In this paper, assuming that the parameters of POMDPs are imprecise but bounded, we formulate the framework of bounded-parameter...

متن کامل

Quantum partially observable Markov decision processes

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. We present quantum observable Markov decision processes (QOMDPs), the quantum analogs of partially observable Marko...

متن کامل

Inducing Partially Observable Markov Decision Processes

In the field of reinforcement learning (Sutton and Barto, 1998; Kaelbling et al., 1996), agents interact with an environment to learn how to act to maximize reward. Two different kinds of environment models dominate the literature—Markov Decision Processes (Puterman, 1994; Littman et al., 1995), or MDPs, and POMDPs, their Partially Observable counterpart (White, 1991; Kaelbling et al., 1998). B...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SSRN Electronic Journal

سال: 2018

ISSN: 1556-5068

DOI: 10.2139/ssrn.3195310